Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Immunol ; 14: 1158859, 2023.
Article in English | MEDLINE | ID: covidwho-2313613

ABSTRACT

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic growth factor originally identified as a stimulus that induces the differentiation of bone marrow progenitor cells into granulocytes and macrophages. GM-CSF is now considered to be a multi-origin and pleiotropic cytokine. GM-CSF receptor signals activate JAK2 and induce nuclear signals through the JAK-STAT, MAPK, PI3K, and other pathways. In addition to promoting the metabolism of pulmonary surfactant and the maturation and differentiation of alveolar macrophages, GM-CSF plays a key role in interstitial lung disease, allergic lung disease, alcoholic lung disease, and pulmonary bacterial, fungal, and viral infections. This article reviews the latest knowledge on the relationship between GM-CSF and lung balance and lung disease, and indicates that there is much more to GM-CSF than its name suggests.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Lung , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Lung/metabolism , Lung Diseases, Interstitial , Macrophages, Alveolar , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism
2.
Cell Death Dis ; 13(2): 137, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1683990

ABSTRACT

Acute respiratory distress syndrome (ARDS) is triggered by various aetiological factors such as trauma, sepsis and respiratory viruses including SARS-CoV-2 and influenza A virus. Immune profiling of severe COVID-19 patients has identified a complex pattern of cytokines including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-5, which are significant mediators of viral-induced hyperinflammation. This strong response has prompted the development of therapies that block GM-CSF and other cytokines individually to limit inflammation related pathology. The common cytokine binding site of the human common beta (ßc) receptor signals for three inflammatory cytokines: GM-CSF, IL-5 and IL-3. In this study, ßc was targeted with the monoclonal antibody (mAb) CSL311 in engineered mice devoid of mouse ßc and ßIL-3 and expressing human ßc (hßcTg mice). Direct pulmonary administration of lipopolysaccharide (LPS) caused ARDS-like lung injury, and CSL311 markedly reduced lung inflammation and oedema, resulting in improved oxygen saturation levels in hßcTg mice. In a separate model, influenza (HKx31) lung infection caused viral pneumonia associated with a large influx of myeloid cells into the lungs of hßcTg mice. The therapeutic application of CSL311 potently decreased accumulation of monocytes/macrophages, neutrophils, and eosinophils without altering lung viral loads. Furthermore, CSL311 treatment did not limit the viral-induced expansion of NK and NKT cells, or the tissue expression of type I/II/III interferons needed for efficient viral clearance. Simultaneously blocking GM-CSF, IL-5 and IL-3 signalling with CSL311 may represent an improved and clinically applicable strategy to reducing hyperinflammation in the ARDS setting.


Subject(s)
Cytokine Receptor Common beta Subunit/genetics , Cytokine Receptor Common beta Subunit/physiology , Respiratory Distress Syndrome/immunology , Animals , Antibodies, Monoclonal/immunology , Cytokine Receptor Common beta Subunit/immunology , Cytokines , Eosinophils/immunology , Female , Humans , Immunity/genetics , Immunity/physiology , Inflammation/immunology , Leukocytes/metabolism , Male , Mice , Mice, Transgenic , Neutrophils/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor , Receptors, Interleukin-3 , Receptors, Interleukin-5 , Respiratory Distress Syndrome/physiopathology
3.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Article in English | MEDLINE | ID: covidwho-1541262

ABSTRACT

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Subject(s)
Arthritis, Rheumatoid/metabolism , COVID-19/therapy , Pulmonary Alveolar Proteinosis/immunology , Pulmonary Surfactants/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Arthritis, Rheumatoid/therapy , Autoantibodies/chemistry , Bronchoalveolar Lavage Fluid , COVID-19/immunology , Choline/analogs & derivatives , Female , Granulocyte-Macrophage Colony-Stimulating Factor/chemistry , Inflammation , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Pulmonary Alveolar Proteinosis/genetics , SARS-CoV-2/immunology , Surface-Active Agents
4.
Front Immunol ; 11: 1625, 2020.
Article in English | MEDLINE | ID: covidwho-688729

ABSTRACT

COVID-19 is a clinical syndrome ranging from mild symptoms to severe pneumonia that often leads to respiratory failure, need for mechanical ventilation, and death. Most of the lung damage is driven by a surge in inflammatory cytokines [interleukin-6, interferon-γ, and granulocyte-monocyte stimulating factor (GM-CSF)]. Blunting this hyperinflammation with immunomodulation may lead to clinical improvement. GM-CSF is produced by many cells, including macrophages and T-cells. GM-CSF-derived signals are involved in differentiation of macrophages, including alveolar macrophages (AMs). In animal models of respiratory infections, the intranasal administration of GM-CSF increased the proliferation of AMs and improved outcomes. Increased levels of GM-CSF have been recently described in patients with COVID-19 compared to healthy controls. While GM-CSF might be beneficial in some circumstances as an appropriate response, in this case the inflammatory response is maladaptive by virtue of being later and disproportionate. The inhibition of GM-CSF signaling may be beneficial in improving the hyperinflammation-related lung damage in the most severe cases of COVID-19. This blockade can be achieved through antagonism of the GM-CSF receptor or the direct binding of circulating GM-CSF. Initial findings from patients with COVID-19 treated with a single intravenous dose of mavrilimumab, a monoclonal antibody binding GM-CSF receptor α, showed oxygenation improvement and shorter hospitalization. Prospective, randomized, placebo-controlled trials are ongoing. Anti-GM-CSF monoclonal antibodies, TJ003234 and gimsilumab, will be tested in clinical trials in patients with COVID-19, while lenzilumab received FDA approval for compassionate use. These trials will help inform whether blunting the inflammatory signaling provided by the GM-CSF axis in COVID-19 is beneficial.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Betacoronavirus/immunology , Coronavirus Infections , Drug Delivery Systems , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Pandemics , Pneumonia, Viral , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Animals , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Disease Models, Animal , Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Humans , Inflammation/drug therapy , Inflammation/immunology , Inflammation/pathology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/pathology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/immunology , SARS-CoV-2 , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes/immunology , T-Lymphocytes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL